2025/11/04 15:17 1/17 Distributed Services Architecture (DSA)

Distributed Services Architecture (DSA)

DSA brings together entities like devices, services, and applications into one data model that updates in
real time. By representing these entities as one system, DSA makes possible or simplifies various tasks,
such as analytics, inter-device communication, distributed computing, and application development.

You can read more about DSA on the DSA home page.

Structure of DSA

DSA represents each of the entities in the system as one of the following types:

* Broker: Brokers manage security, links, subscriptions, and node permissions. Other entities in the
system can operate only as permitted by a broker. A broker also saves configuration data to disk. A
broker also routes data from a source to a destination.

e DSLink: DSLinks create, publish, and interact with data. DSLinks, which connect to brokers, can
subscribe to data in the DSA system, to receive data whenever the data changes. You can
download DSLinks from I0T-DSA on Github.

* Node: General term for the components connected by DSA. Node can be brokers, DSLinks, metrics,
actions, attributes, or folders containing other nodes.

e Metric: A metric is a key/value pair. The value can be any of the data types listed in Supported
Data Types, including an arbitrary value map. A metric can originate on any broker, DSLink, or
other node.

» Data Node: Data nodes enable data to be stored on the broker's host server.

e Action: An action is an invocable command that can affect an entity. For example, an action might
create a node or set a metric value. An action can exist on any broker, DSLink, other node, or
metric.

e Attribute: An attribute is metadata for the selected entity, represented as a key/value pair. An
attribute can exist on any broker, DSLink, other node, or metric.

Upstream and Downstream Connections

A downstream entity requests permission, and an upstream entity grants or refuses that permission. A
broker is always upstream from its DSLinks. A broker can be either upstream or downstream from
another broker. Upstream and downstream connections are important concepts to understand when you
configure permissions for multiple servers or multiple brokers on one server.

DGLogik - https://wiki.dglogik.com/

http://iot-dsa.org/get-started/download-dsa
https://github.com/iot-dsa

2025/11/04 15:17 2/17 Distributed Services Architecture (DSA)

Connecting Two DSA Installations (Brokers)

When you connect two DSA installations, one is an upstream broker and the other is a downstream
broker.

For an example, see this video.
To connect two DSA installations:

1. From the downstream broker, right-click sys > upstream, and choose Add Upstream
Connection.

2. For Name, specify the node name that you want to appear in the downstream tree to represent
the upstream broker.

3. For Url, specify the port, followed by /conn, for example http://localhost:8081/conn.

4. For Broker Name, specify the name that you want to appear in the upstream tree to represent the
downstream broker.

5. For Group, specify the permission group for the upstream broker.

6. Log in to the upstream broker.

7. To authorize the downstream broker to remove it from quarantine, from the upstream broker,
choose sys > quarantine > Deauthorize, and specify the downstream broker.

Supported Data Types

DSA supports these data types:

e String—A sequence of characters or an empty string.

e Number—A number or a null value.

e Bool—A true or false value.

e Array—An array object or a null value. The values in the array are of the dynamic data type. An
example array of number

valuesis [2,3,5,7,11]. An example array of map values is
[{"hello":"world", "number":1},{"hello":"world"}].

e Map—A map object containing key/value pairs, or a null value. The key is always a string, and the
value is the dynamic data type. An example value is
{"hello":"world","primes":[2,3,5,7,11]}.

* Binary—A byte array expressed as a string, or a null value. The string begins with \uG0@1Bytes:
and ends with a byte array encoded in base 64.

¢ Dynamic—A value that can be any of the above types.

DGLogik - https://wiki.dglogik.com/

http://rnd.iot-dsa.org/file/proj/rick/video/permission.html

2025/11/04 15:17 3/17 Distributed Services Architecture (DSA)

Installing DSA

To install DSA on Mac OS X, Microsoft Windows, Linux, or other platforms, follow the steps in the relevant
video on this page, depending on your platform.

If you are installing DSA on a Raspberry Pi, BeagleBone Black, or DGBox, you can also follow the steps in
this blog post and video.

If you install DSA with DGLux5, and do not have a DGLux5 license, follow the steps to request a license
when you are prompted to do so.

Orientation to the DGLux5 Data and Metrics Panels with DSA

The following image shows the Data panel and Metrics panel in DGLux5 when DSA is used.

DGLogik - https://wiki.dglogik.com/

http://iot-dsa.org/get-started/download-dsa
http://www.dglogik.com/company/blog/206-raspi-dsa
https://wiki.dglogik.com/dglux5_wiki:workspace_and_workflow:panels_and_menus:data_panel
https://wiki.dglogik.com/dglux5_wiki:workspace_and_workflow:panels_and_menus:metrics_panel

Distributed Services Architecture (DSA)

2025/11/04 15:17 4/17
Project Data
dala

v downstream

dataflow

Weather

r 1)

» config

dglux

v links

» dataflow
» JDBC
» System
¢ Weather
quaranting
» lokens
upsiream
» USErs
upsiream

" users

Maeatrics

CL Search

» Architecture : xB6_B4

. Batiery Level : BB %

CPU Usage : 28.56 %
Diagnostics Mode : disabled

Digk Usage : 45.1 %

4l_®

O

®» ©

=

data node

2

downstream node

3|sys node

N

sys > links node

5

metrics at the currently selected node (downstream > System)

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/_detail/dsa_wiki:data_metrics.png?id=dsa_wiki%3Ahome

2025/11/04 15:17 5/17 Distributed Services Architecture (DSA)

Storing Data on the DSA Server

To store data on the DSA Server:
1. In the Data panel, right-click the data node.
2. Choose Add > Node or Add > Value.
The Value option lets you specify a data type.
3. Without moving the mouse pointer away from the pop-up menu, enter a node name, and optionally
choose a data type.
A top-level data node is created.

4. In the Metrics panel, right-click the new data node that you created.
5. Choose Add > Node or Add > Value to create a child of this node.
6. Continue adding nodes until all nodes are represented.

To set a value:

1. In the Data panel, select the data node.
2. In the Metrics panel, right-click the metric whose value you want to set.
3. Choose @set, enter the value, and click Invoke.

To invoke an action on a metric:
1. In the Data panel, select the data node.
2. In the Metrics panel, right-click the metric on which you want to invoke an action.
A pop-up menu of available data actions is displayed.

3. Choose the action, enter any required information, and click Invoke.

Installing and Updating a DSLink

To install a DSLink:

1. In the Data panel, right-click the sys > links node.
2. Choose Install Link, and choose an installation method:

o If you have a link to a ZIP file, choose from Url

o If you have a ZIP file to upload, choose from Zip.

o If the link can be found in IOT-DSA on Github, choose from Repository.
3. Specify a name for the new DSLink.

DGLogik - https://wiki.dglogik.com/

https://github.com/iot-dsa

2025/11/04 15:17 6/17 Distributed Services Architecture (DSA)

4. Without moving the mouse pointer away from the pop-up window, click Invoke.

When the link has been successfully installed, a "Success" message appears.

5. To start the link, right-click the link under sys > links > [link name], and choose Start Link.

When the link has started successfully, it appears under downstream > [link name].

To update a DSLink:

1. In the Data panel, right-click the link under sys > links.
2. Choose Update and choose an update type, and then click Invoke.

Remote Dataflow

DSA installations feature a dataflow DSLink, also referred to as remote dataflow. This tool is similar to
DGLux5 dataflow, described here, also known as local dataflow.

Differences between the two are:

e Remote dataflow is stored on the DSA server with other DSLinks, not in the project files. Therefore,
remote dataflow can run even when the project is not open in a browser.
e Certain blocks, such as Browser API blocks, are not available in remote dataflow.

To create a remote dataflow model:

1. In the Data panel, right-click downstream > dataflow.

2. Choose Create Dataflow.

3. Specify a name for the new dataflow model, and click Invoke.

4. Choose the new dataflow model at downstream > dataflow > [dataflow model name].

Block property values in a remote dataflow model appear as metrics in the Metrics panel. They can be
used like any other metric. The following image demonstrates an example of remote dataflow metrics.

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/dglux5_wiki:dataflow:home

Distributed Services Architecture (DSA)

2025/11/04 15:17 7/17
Project Dala 09 Trigonometric Functions X a X index X
4= There are no selected objects
data k
4 defs T
v downsiream v
v dataflow b
v example_dataflow [
number .
numberi l
Feed \
v REST , Dataflow
Blocks Symbols
3 Server_1 _—
Server_2 Search:
System
* Variables
oy number H
4 .
str String value: 2 |
unstrram # Number <
Metrics Cjp Boolean
A Color P
] Search £z2 Table value: 2 |
T

output : 4

Sbase : /downstream/dataflow
Sdgld : 18

SdgType : add

Sis : dglogik/difadd

Swritable : write

@length : 2

@ps [0, 1, outgut]

@ 253

By : 108

v Data Services

» DSA

Tr String Loader
‘1“... String Uploader
i+ List Files
(@ Get Children
= Get Node
(i) Project-Info
2. Relativize

(Z Multi-Histories

Ex Zip Upload
' Zip Download

* Browser API

= Jsonp Loader

(09 Trigonometric Functions

) input 0:

2')
P input 1: 2 p
output: 4“?

Security and Permissions

See also: Tokens.

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/_detail/dsa_wiki:remote_dataflow.png?id=dsa_wiki%3Ahome
https://github.com/IOT-DSA/docs/wiki/Tokens

2025/11/04 15:17 8/17 Distributed Services Architecture (DSA)

Quarantined Brokers and Links

When quarantine is enabled on a broker, any downstream broker or link without an authorized token is
held in quarantine. The system can read, subscribe to, and command nodes that are in quarantine, but a
node that is in quarantine cannot access other nodes in the system.

Whether quarantine is enabled is specified in dsa/dglux-server/server.json.

To remove a node from quarantine, you can authorize or deauthorize the node. An authorized node is
granted access as the permission group that you specify. A deauthorized node is refused access and
removed from the system. You can also deauthorize any downstream broker or node that has previously
been authorized.

When quarantine is disabled on a broker, any link can connect to the broker without approval.

To authorize a broker or link:

1. Right-click sys > quarantine > Authorize.
A list of quarantined nodes appears.

2. For Dsld, choose the node that you want to authorize.
For Group, choose the permission group that you want to assign.
4. Specify a name, and click Invoke.

w

To deauthorize a broker or link:

1. Right-click sys > quarantine > Deauthorize.
A list of quarantined nodes appears.

2. For Name, choose the node that you want to authorize.
3. Click Invoke.

Permission Groups

In DSA, you assign permission groups to users. Permission groups are defined within dsa/dglux-
server/server.json. Information about permission groups can be found here. Any user with
"superuser" enabled has the maximum permission level and does not need a permission group defined.

More information about DSA permissions can be found here.

Users

To create a new user:

DGLogik - https://wiki.dglogik.com/

https://github.com/IOT-DSA/docs/wiki/permission-list-for-the-root
https://github.com/IOT-DSA/docs/wiki/DSA-Permission-Model

2025/11/04 15:17 9/17 Distributed Services Architecture (DSA)

1. Right-click sys > users, and choose Create User.

2. Without moving the mouse pointer away from the pop-up window, enter a user name and
password, and specify whether the user has superuser access.

3. Click Invoke.

To edit a username:
1. Right-click sys > users > [username], and choose Rename User.
To edit a user password:

1. Right-click sys > users > [username], and choose Change Password.
2. Enter the new password, and click Invoke.

To edit a user's permission group, landing page, or other user properties:

1. Right-click sys > users > [username], and choose Edit User.
2. Edit the properties, and click Invoke.

To delete a user:

¢ Right-click sys > users > [username], and choose Remove User.

The C Broker

The C Broker is a small-footprint version of the DGLux Server (to be precise, the DART Broker). The C
Broker is intended for embedding in devices where economy of scale is important. This document tells
you how to build, configure and launch the C Broker. This document assumes you are familiar with DSA
and DGLux5.

The C Broker receives data from devices by way of DSLinks, in the same way as the DGLux Server. To
use the DGLux5 GUI to manage DSLinks that connect to an instance of the C Broker, install and run the
LifeCycle Manager as described below. The following figure shows a standard topology on the left and an
embedded topology on the right.

DGLogik - https://wiki.dglogik.com/

2025/11/04 15:17 10/17 Distributed Services Architecture (DSA)

C Broker Device running embedded
C Braker
..‘_
DGLux
Server LifeCycle
Manager
DSLink _
DSLink
Sensors and Devices Sensors and Devices
Differences between the DSA Server and the C Broker are as follows:
Feature DGLux Server/DART Broker|C Broker
Built-in web server Yes No
Hosts DGLux5 GUI Yes No
Manages users and filesystem access|Yes No

Note: Because and the C Broker support a subset of the features of the DGLux Server, the JSON
configuration files for the C Broker are not interchangeable with those of the DGLux Server.

Building the C Broker

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/_detail/dsa_wiki:cbrokertopology.png?id=dsa_wiki%3Ahome

2025/11/04 15:17 11/17 Distributed Services Architecture (DSA)

To download the source code from GitHub, you must have git installed. To build the C Broker, you must
have cmake 3.0.0 installed These instructions assume you are building on Ubuntu 14.04.

To download the C Broker source code from github, issue the following command:

git clone https://github.com/I0OT-DSA/sdk-dslink-c

To build the C Broker, issue the following commands in the directory where you cloned the source code:
mkdir build

sh tools/build.sh

Configuring the C Broker

To configure settings for the C Broker, edit the broker.json file, which is created when you build the C
Broker. This file must reside in same directory as the executable. The default broker.json file contains the
following settings:

{
"http": {
"enabled": true,
"host": "0.0.0.0",
“port": 8080
b
"log level": "info",
"allowAllLinks": true,
“maxQueue": 1024,
"defaultPermission": null,
"storage": {
"path": "."
¥
}

The following table lists valid C Broker settings.

HTTP Settings
enabled To configure the broker to accept HTTP connections, set to true. Default: true
Specify the host name of IP address where the broker runs. Default is 0.0.0.0, which
host means that if the host has multiple IP addresses, the C Broker accepts connections on
all of them.
port Specify the port on which the broker accepts HTTP connections. Default is 8100.
HTTPS Settings
enabled To configure the broker to accept HTTPS connections, set to true. Default: true

DGLogik - https://wiki.dglogik.com/

2025/11/04 15:17

12/17 Distributed Services Architecture (DSA)

HTTP Settings

Specify the host name of IP address where the broker runs. Default is 0.0.0.0, which

host means that if the host has multiple IP addresses, the C Broker accepts connections on
all of them.

port Specify the port on which the broker accepts HTTPS connections. Default is 8463.
Certificate file name (.pem file). Put certificate files in a subdirectory named “certs,”

certName . : .
under the directory where the C Broker is running.

certkeyName Key file name (.pem file). Put key files in a subdirectory named “certs,” under the

directory where the C Broker is running.

Other settings

Specifies the logging verbosity. Valid values are fatal, error, warn, info and

log_level debug. Default is info.
. Specifies whether the C Broker accepts connections from all DSLinks or only
allowAllLinks . .
previously-registered ones.
The maximum number of messages from DSLinks that remain queued when the
maxQueue requestor has specified the qos 1 or qos 3 options. The qos (“quality of service”)

settings control how the broker caches incoming data to handle disparities between
the responsiveness of requestors and that of responders.)

defaultPermission

Specifies the permissions to be assigned to DSLinks that do not have any permissions
configured for their associated user. Valid permissions, from least to most restrictive,
are config, write, read, list, and none. (More information...)

path

The directory that the C Broker uses for working storage for qos queue data, incoming
data values, and other data that it must store locally.

Specify the defaultPermission setting using JSON notation; for example:

"defaultPermission":
:config
rwrite", "write"],

[
[
[
[

:read
ruser

[

config"],

n n
’

n , n r.eadll] ,
n IIWritell] ,

’

["default", "read"]

If you are using to
subdirectory unde

kens to authenticate connections from DSLinks, token files must reside in the “tokens”
r the directory where the C Broker is running. The name of the token file must be the

first 16 characters of the full token string. Specify tokens in JSON format, as follows, one token per file, as

follows:

{"$$timeRange

"47S7ybkxV6ka7Ha6zIHsF116wiYwu4i8EGY1lqdzK7NQw5Rus",
":write"}

"$$group”:

e $$timeRang

"+ null, "$$token":
"$$managed": false,

e: A date and time range that specifies the start and end of the period when this token

is valid. Example: 2017-03-10T00:00:00/2017-03-11T12:00:00

o $$token: 48
e $$managed
e $$group: Th

-character token
: To disconnect and remove all associated DSLinks when the token expires, set to true.

e permission group to be assigned to the DSLink that connects using this token.

DGLogik - https://wiki.dglogik.com/

https://github.com/IOT-DSA/docs/wiki/DSA-Permission-Model

2025/11/04 15:17 13/17 Distributed Services Architecture (DSA)

Deploying the C Broker

To run the C Broker on a machine other than the machine where you built it, copy the broker executable
and the broker.json file to the desired location.

To start the broker, invoke its executable on the command line. For example:
./broker &

To verify that the broker is accepting connections, issue the following command (assuming you have
configured the broker to listen on port 8080):

telnet localhost 8080

Connecting to the C Broker

To use DGLux5 to get access to the data that the C Broker receives from its DSLinks, configure a
connection as follows:

1. In the Data panel, expand the sys node and right-click upstream.
2. Choose Add Upstream Connection and specify settings,
3. Click Invoke.

Settings:

e Name: The name to be displayed in DGLux5

e Url: The URL required to connect to the DSA Server. For example: http://101.0.1.197:8080/conn
e Broker Name: The name to be displayed by the upstream broker.

e Token: If required, the name of the token file containing the token needed to authenticate.

e Group: The group defining the permissions to be assigned to the connection.

When the C Broker accepts the connection, it displays a success message. To view the C Broker in
DGLux5, expand the sys > upstream node and verify that your broker instance is listed.

DGLogik - https://wiki.dglogik.com/

http://101.0.1.197:8080/conn

2025/11/04 15:17 14/17 Distributed Services Architecture (DSA)

Upstream C Broker

The figure below shows the topology.

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/_detail/dsa_wiki:cbrokerconnection.png?id=dsa_wiki%3Ahome

2025/11/04 15:17 15/17 Distributed Services Architecture (DSA)

downstream
O/
data
data
O Upstream C Broker
downstream

You can configure the C Broker connection to the DSA Server by manually editing configuration files that
reside on the machine where the C Broker runs, as follows:

1. In the directory where the C Broker runs, create a subdirectory named “upstream.”

2. In the “upstream” directory, create one JSON file for each upstream connection that you want to
define, using whatever file naming convention is meaningful to you. In these files, specify the
connection settings in JSON, formatted as follows:

{"name": "rnd", "brokerName": "mybroker", "url": "http://rnd.iot-dsa.org",
"token": "<token string>", "enabled": true, "group": ":config"}
Settings:

e name: Name of the upstream broker, must be same as the file name in the upstream folder
brokerName: Name of the current broker to be displayed under the upstream broker

url: The URL required to connect to the C Broker. For example: http://101.0.1.197:8080/conn
token: (Optional) Token to be used when the C Broker connects.

group: The permission group for the C Broker.

The LifeCycle Manager

The C Broker lacks the DSLink-management features of the DGLux Server. The LifeCycle Manager
enables you to use DGLux5 to manage the DSLinks that connect to the C Broker.

To build the LifeCycle Manager, your system must have the following software installed. The versions
listed below are known to work. The build process and the software itself has not been tested with other
versions of these packages.

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/_detail/dsa_wiki:cbrokertopology2.png?id=dsa_wiki%3Ahome
http://101.0.1.197:8080/conn

2025/11/04 15:17 16/17 Distributed Services Architecture (DSA)

e g++-514.04
cmake 3.0.0
libssh2 1.4.3
zlib 1.2.8
boost 1.54
libcurl 7.35
http-parser 2.1

Building the LifeCycle Manager

Note: The github repository for the Lifecycle Manager is private. If you attempt to clone the source and
are denied permission, contact DGLogik to request access to the repository.

To download the LifeCycle source code from github, issue the following command:
git clone https://github.com/dglogik/dslink-manager

To build the LifeCycle manager, issue the following commands in the directory where you cloned the
source code:

mkdir build

cd build

git submodule init

git submodule update

cmake -DCMAKE CXX COMPILER=g++-5 -DCMAKE BUILD TYPE=Release
make

To verify that the build succeeded, check that the build directory now contains an executable file named
“dsmanager.”

Deploying the LifeCycle Manager

To run the LifeCycle Manager on a machine other than the machine on which it was built, copy the
following files from the build machine to the desired production directory:

e dsmanager (executable)
e libsdk_dslink_c.so
e dslink.json (To configure the display name for LifeCycle Manager, edit this file.)

Before starting the LifeCycle Manager, verify that the C Broker is running. To start the LifeCycle manager,
invoke its executable on the command line. For example, to run the LifeCycle Manager (assuming the
broker is configured to listen on port 8080) in background mode, issue the following command:

./dsmanager --broker http://localhost:8080/conn

DGLogik - https://wiki.dglogik.com/

2025/11/04 15:17 17/17 Distributed Services Architecture (DSA)

If the LifeCycle Manager started successfully, it displays “Successfully connected to the broker.” To verify
that the LifeCycle Manager is accessible using DGLux5, expand the Data pane upstream node. Locate the
C Broker, expand its downstream node, and verify that the LifeCycle Manager is listed and is not grayed
out. To manage the DSLinks that are connected to the C Broker, right-click the LifeCycle Manager node.

Troubleshooting

Both the C Broker and LifeCycle Manager log all their messages to standard output and do not create any
physical logs.

From:
https://wiki.dglogik.com/ - DGLogik

Permanent link:
https://wiki.dglogik.com/dsa_wiki:home?rev=1494543155

Last update: 2021/09/20 14:19

DGLogik - https://wiki.dglogik.com/

https://wiki.dglogik.com/
https://wiki.dglogik.com/dsa_wiki:home?rev=1494543155

	Distributed Services Architecture (DSA)
	Structure of DSA
	Upstream and Downstream Connections
	Connecting Two DSA Installations (Brokers)
	Supported Data Types
	Installing DSA
	Orientation to the DGLux5 Data and Metrics Panels with DSA
	Storing Data on the DSA Server
	Installing and Updating a DSLink
	Remote Dataflow
	Security and Permissions
	Quarantined Brokers and Links
	Permission Groups
	Users

	The C Broker
	Building the C Broker
	Configuring the C Broker
	Deploying the C Broker
	Connecting to the C Broker
	The LifeCycle Manager
	Building the LifeCycle Manager
	Deploying the LifeCycle Manager
	Troubleshooting

